- Algebra
- Arithmetic
- Whole Numbers
- Numbers
- Types of Numbers
- Odd and Even Numbers
- Prime & Composite Numbers
- Sieve of Eratosthenes
- Number Properties
- Commutative Property
- Associative Property
- Identity Property
- Distributive Property
- Order of Operations
- Rounding Numbers
- Absolute Value
- Number Sequences
- Factors & Multiples
- Prime Factorization
- Greatest Common Factor
- Least Common Multiple
- Squares & Perfect Squares
- Square Roots
- Squares & Square Roots
- Simplifying Square Roots
- Simplifying Radicals
- Radicals that have Fractions
- Multiplying Radicals

- Integers
- Fractions
- Introducing Fractions
- Converting Fractions
- Comparing Fractions
- Ordering Fractions
- Equivalent Fractions
- Reducing Fractions
- Adding Fractions
- Subtracting Fractions
- Multiplying Fractions
- Reciprocals
- Dividing Fractions
- Adding Mixed Numbers
- Subtracting Mixed Numbers
- Multiplying Mixed Numbers
- Dividing Mixed Numbers
- Complex Fractions
- Fractions to Decimals

- Decimals
- Exponents
- Percent
- Scientific Notation
- Proportions
- Equality
- Properties of equality
- Addition property of equality
- Transitive property of equality
- Subtraction property of equality
- Multiplication property of equality
- Division property of equality
- Symmetric property of equality
- Reflexive property of equality
- Substitution property of equality
- Distributive property of equality

- Commercial Math

- Calculus
- Differential Calculus
- Limits calculus
- Mean value theorem
- L’Hôpital’s rule
- Newton’s method
- Derivative calculus
- Power rule
- Sum rule
- Difference rule
- Product rule
- Quotient rule
- Chain rule
- Derivative rules
- Trigonometric derivatives
- Inverse trig derivatives
- Trigonometric substitution
- Derivative of arctan
- Derivative of secx
- Derivative of csc
- Derivative of cotx
- Exponential derivative
- Derivative of ln
- Implicit differentiation
- Critical numbers
- Derivative test
- Concavity calculus
- Related rates
- Curve sketching
- Asymptote
- Hyperbolic functions
- Absolute maximum
- Absolute minimum

- Integral Calculus
- Fundamental theorem of calculus
- Approximating integrals
- Riemann sum
- Integral properties
- Antiderivative
- Integral calculus
- Improper integrals
- Integration by parts
- Partial fractions
- Area under the curve
- Area between two curves
- Center of mass
- Work calculus
- Integrating exponential functions
- Integration of hyperbolic functions
- Integrals of inverse trig functions
- Disk method
- Washer method
- Shell method

- Sequences, Series & Tests
- Parametric Curves & Polar Coordinates
- Multivariable Calculus
- 3d coordinate system
- Vector calculus
- Vectors equation of a line
- Equation of a plane
- Intersection of line and plane
- Quadric surfaces
- Spherical coordinates
- Cylindrical coordinates
- Vector function
- Derivatives of vectors
- Length of a vector
- Partial derivatives
- Tangent plane
- Directional derivative
- Lagrange multipliers
- Double integrals
- Iterated integral
- Double integrals in polar coordinates
- Triple integral
- Change of variables in multiple integrals
- Vector fields
- Line integral
- Fundamental theorem for line integrals
- Green’s theorem
- Curl vector field
- Surface integral
- Divergence of a vector field
- Differential equations
- Exact equations
- Integrating factor
- First order linear differential equation
- Second order homogeneous differential equation
- Non homogeneous differential equation
- Homogeneous differential equation
- Characteristic equations
- Laplace transform
- Inverse laplace transform
- Dirac delta function

- Differential Calculus
- Matrices
- Pre-Calculus
- Lines & Planes
- Functions
- Domain of a function
- Transformation Of Graph
- Polynomials
- Graphs of rational functions
- Limits of a function
- Complex Numbers
- Exponential Function
- Logarithmic Function
- Sequences
- Conic Sections
- Series
- Mathematical induction
- Probability
- Advanced Trigonometry
- Vectors
- Polar coordinates

- Probability
- Geometry
- Angles
- Triangles
- Types of Triangles
- Special Right Triangles
- 3 4 5 Triangle
- 45 45 90 Triangle
- 30 60 90 Triangle
- Area of Triangle
- Pythagorean Theorem
- Pythagorean Triples
- Congruent Triangles
- Hypotenuse Leg (HL)
- Similar Triangles
- Triangle Inequality
- Triangle Sum Theorem
- Exterior Angle Theorem
- Angles of a Triangle
- Law of Sines or Sine Rule
- Law of Cosines or Cosine Rule

- Polygons
- Circles
- Circle Theorems
- Solid Geometry
- Volume of Cubes
- Volume of Rectangular Prisms
- Volume of Prisms
- Volume of Cylinders
- Volume of Spheres
- Volume of Cones
- Volume of Pyramids
- Volume of Solids
- Surface Area of a Cube
- Surface Area of a Cuboid
- Surface Area of a Prism
- Surface Area of a Cylinder
- Surface Area of a Cone
- Surface Area of a Sphere
- Surface Area of a Pyramid
- Geometric Nets
- Surface Area of Solids

- Coordinate Geometry and Graphs
- Coordinate Geometry
- Coordinate Plane
- Slope of a Line
- Equation of a Line
- Forms of Linear Equations
- Slopes of Parallel and Perpendicular Lines
- Graphing Linear Equations
- Midpoint Formula
- Distance Formula
- Graphing Inequalities
- Linear Programming
- Graphing Quadratic Functions
- Graphing Cubic Functions
- Graphing Exponential Functions
- Graphing Reciprocal Functions

- Geometric Constructions
- Geometric Construction
- Construct a Line Segment
- Construct Perpendicular Bisector
- Construct a Perpendicular Line
- Construct Parallel Lines
- Construct a 60° Angle
- Construct an Angle Bisector
- Construct a 30° Angle
- Construct a 45° Angle
- Construct a Triangle
- Construct a Parallelogram
- Construct a Square
- Construct a Rectangle
- Locus of a Moving Point

- Geometric Transformations

- Sets & Set Theory
- Statistics
- Collecting and Summarizing Data
- Common Ways to Describe Data
- Different Ways to Represent Data
- Frequency Tables
- Cumulative Frequency
- Advance Statistics
- Sample mean
- Population mean
- Sample variance
- Standard deviation
- Random variable
- Probability density function
- Binomial distribution
- Expected value
- Poisson distribution
- Normal distribution
- Bernoulli distribution
- Z-score
- Bayes theorem
- Normal probability plot
- Chi square
- Anova test
- Central limit theorem
- Sampling distribution
- Logistic equation
- Chebyshev’s theorem

- Difference
- Correlation Coefficient
- Tautology
- Relative Frequency
- Frequency Distribution
- Dot Plot
- Сonditional Statement
- Converse Statement
- Law of Syllogism
- Counterexample
- Least Squares
- Law of Detachment
- Scatter Plot
- Linear Graph
- Arithmetic Mean
- Measures of Central Tendency
- Discrete Data
- Weighted Average
- Summary Statistics
- Interquartile Range
- Categorical Data

- Trigonometry
- Vectors
- Multiplication Charts
- Time Table
- 2 times table
- 3 times table
- 4 times table
- 5 times table
- 6 times table
- 7 times table
- 8 times table
- 9 times table
- 10 times table
- 11 times table
- 12 times table
- 13 times table
- 14 times table
- 15 times table
- 16 times table
- 17 times table
- 18 times table
- 19 times table
- 20 times table
- 21 times table
- 22 times table
- 23 times table
- 24 times table

- Time Table

# 45°-45°-90° Triangle – Explanation & Examples

Now that we know what a right triangle is and what the special right triangles are, it is time to discuss them individually. Let’s see what a **45°-45°-90° triangle** is.

## What is a 45°-45°-90° Triangle?

**A 45°-45°-90° triangle is a special right triangle that has two 45-degree angles and one 90-degree angle.** The side lengths of this triangle are in the ratio of;

Side 1: Side 2: Hypotenuse = n: n: n√2 = 1:1: √2.

The **45°-45°-90° right triangle is half of a square**. This is because the square has each angle equal to 90°, and when it is cut diagonally, the one angle remains as 90°, and the other two 90° angles bisected (cut into half) and become 45° each.

The diagonal of a square becomes hypotenuse of a right triangle, and the other two sides of a square become the two sides (base and opposite) of a right triangle.

The 45°-45°-90° right triangle is sometimes referred to as an isosceles right triangle because it has two equal side lengths and two equal angles.

We can calculate the hypotenuse of the 45°-45°-90° right triangle as follows:

Let side 1 and side 2 of the isosceles right triangle be x.

Apply the Pythagorean Theorem a^{2} + b^{2} = c^{2}, where a and b are side 1 and 2 and c is the hypotenuse.

x^{2} + x^{2} = 2x^{2}

Find the square root of each term in the equation

√x^{2 }+ √x^{2 }= √(2x^{2})

x + x = x √2

Therefore, the hypotenuse of a 45°; 45°; 90° triangle is x √2

## How to Solve a 45°-45°-90° Triangle?

Given the length of one side of a 45°-45°-90° triangle, you can easily calculate the other missing side lengths without resorting to the Pythagorean Theorem or trigonometric methods functions.

*Calculations of a 45°-45°-90° right triangle fall into two possibilities:*

- Case 1

To calculate the length of hypotenuse when given the length of one side, multiply the given length by √2.

- Case 2

When given the length of the hypotenuse of a 45°-45°-90° triangle, you can calculate the side lengths by simply dividing the hypotenuse by √2.

Note: Only the 45°-45°-90° triangles can be solved using the 1:1: √2 ratio method.

*Example 1*

The hypotenuse of a 45°; 45°; 90° triangle is 6√2 mm. Calculate the length of its base and height.

__Solution__

Ratio of a 45°; 45°; 90° triangle is n: n: n√2. So, we have;

⇒ n√2 = 6√2 mm

Square both sides of the equation.

⇒ (n√2)^{2} = (6√2)^{2} mm

⇒ 2n^{2} = 36 * 2

⇒ 2n^{2 }= 72

n^{2} = 36

Find the square root.

n = 6 mm

Hence, the base and height of the right triangle are 6 mm each.

*Example 2*

Calculate the right triangle’s side lengths, whose one angle is 45°, and the hypotenuse is 3√2 inches.

__Solution__

Given that one angle of the right triangle is 45 degrees, this must be a 45°-45°-90° right triangle.

Therefore, we use the n: n: n√2 ratios.

Hypotenuse = 3√2 inches = n√2;

Divide both sides of the equation by √2

n√2/√2 = 3√2/√2

n = 3

Hence, the length of each side of the triangle is 3 inches.

*Example 3*

The shorter side of an isosceles right triangle is 5√2/2 cm. What is the diagonal of the triangle?

__Solution__

An isosceles right triangle is the same as the 45°-45°-90° right triangle. So, we apply the ratio of n: n: n√2 to calculate the hypotenuse’s length.

Given that n = 5√2/2 cm;

⇒ n√2 = (5√2/2) √2

⇒ (5/2) √ (2 x 2)

⇒ (5/2) √ (4)

⇒ (5/2)2

= 5

Hence, the two legs of the triangle are 5 cm each.

*Example 4*

The diagonal of a 45°-45°-90°right triangle is 4 cm. What is the length of each of the legs?

__Solution__

Divide the hypotenuse by √2.

⇒ 4/√2

⇒ √4/√2

⇒ 4√2/2

= 2√2 cm.

*Example 5*

The diagonal of a square is 16 inches, calculate the length of the sides,

__Solution__

Divide the diagonal or hypotenuse by √2.

⇒ 16/√2

⇒ 16√2/√2 = 8√2

Hence, the length of the legs is 8√2 inches each.

*Example 6*

The angle of elevation of the top of a story building from a point on the ground 10 m from the base of the building is 45 degrees. What is the height of the building?

__Solution__

Given one angle as 45 degrees, assume a 45°- 45°-90°right triangle.

Apply the n: n: n√2 ratio where n = 10 m.

⇒ n√2 = 10√2

Therefore, the height of the building is 10√2 m.

*Example 7*

Find the length of the hypotenuse of a square whose side length is 12 cm.

__Solution__

To get the length of the hypotenuse, multiply the side length by √2.

⇒ 12 √2 = 10 √2

Hence, the diagonal is 10 √2 cm.

*Example 8*

Find the lengths of the other two sides of a square whose diagonal 4√2 inches.

__Solution__

A half of a square makes a 45°- 45°-90°right triangle. Therefore, we use the n: n: n√2 ratios.

n√2 = 4√2 inches.

divide both sides by √2

n = 4

Hence, the side lengths of the square are 4 inches each.

*Example 9*

Calculate the diagonal of a square flower garden whose side length is 30 m.

__Solution__

Apply the n: n: n√2 ratio, where n = 30.

⇒ n√2 = 30 √2

Therefore, the diagonal is equal to 30 √2 m